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Abstract. In this paper, an effective algorithm to generate integrable systems is piven. As 
a result, many new integrable equations are derived in a systematic way. 

1. Introduction 

It is known that a central and very active topic in the theory of integrable systems is 
the search for as many new integrable systems as possible. A key feature of an integrable 
equation is the fact that it can be expressed as the compatibility condition of two 
suitable linear equations, usually referred to as a Lax pair. One of these equations is 
time-independent, takes the form of a linear eigenvalue problem for an eigenfunction 
y and eigenvalue A, and plays a crucial role in the inverse scattering transform. On the 
other hand, the role of Lie algebras in the integrable systems has attracted much atten- 
tion [I-61. Although the various ways in which Lie algebras have entered into the 
theory are not entirely identical, Lie algebras essentially have served as the ground in 
which the principal elements of Lax and zero-curvature equations grow-at least this 
is so in two theories which have been systematically developed: Wilson’s general zero- 
curvature associated with simple Lie algebras [l], and the theory of Drinfel’d and 
Sokolov of equations associated with affine KaoMoody Lie algebras [2].  

Recently motivated by Wilson and Drinfel’d and Sokolov’s idea, Tu considered a 
model isospectral problem and proposed, by introducing modified quantities, a new 
method to generate integrable systems [7]. Furthermore, Tu proposed a new approach 
to Hamiltonian structures of integrable systems-Trace identity [SI. 

In this paper, we develop Tu’s approach and give a very effective algorithm to 
generate integrable systems. As a result, many known and unknown integrable systems 
are derived in such a unified way. 

This paper is divided into four sections. In the next section, we first introduce some 
notation and conventions. A very effective algorithm to generate integrable systems is 
given, which results in many new integrable systems being derived in a systematic and 
unified way. Some illustrative examples are also given. In section 3, some other interest- 
ing examples are considered. Finally, some concluding remarks are given in section 4. 

t Mailing address. 
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2. An algorithm to generate integrable systems 

Let us begin with the following model isospectral problem: 

v x =  Uv (1) 

where U=e,(A)+u,e,(A)+. . .+u,e,(A),e,(A) ( i=O,  1, .  .. , p )  belongstoaloopalgebra 
Ce=sl(N, C)@.c[A, A-'], and ui ( i = l , .  . . , p )  is taken from the Swartz space 
Y'(-oo, a). Different gradations of g may be available; 

deg(X@A") = n  forXcsE(N, C). (2) 

Throughout the paper, we always fix the gradation (2). Just as in [7-IO], we assume 
that ei(A) ( i = O ,  . . . , p )  meets the conditions: 

(i) e&), el(,%), . . . , e,@) are linearly independent; 
(ii) eo@) is pseudoregular, i.e. 

Ce= Kerad eo(A)@had eo@) 

Kerad e@) is commutative 

where 

Kerad eo@)= {XIXcS, [X, eo(A)]=O) 

Imadeo(A)={Ye9, s.t.X=[Y, eo(A)]=O} 

(iii) do>0 ,do>d12d2> .  . .>dp 

where d,=deg e,@). 

Note that eo(a)=eo@Ado with eocsl(N, c). It is easy to deduce that 

d ( N ,  C) =Kerad eo@Imad eo 

Kerad eo is commutative. 

Further, we can easily show the following proposition. 

Pvoposition 1. Matrix eo is similar to a diagonal matrix with N distinct diagonal 
elements. 

Due to this result, we set eo as a diagonal matrix with N distinct diagonal elements 
without loss of generality in the following discussion, i.e. 

a I  
N 

eo=[ a* .., ] ai#a,(ijcj) 2 a;=O. 
i- 1 

U N  

Before going into details, we first recall Tu's scheme for generating integrable systems. 
The scheme contains two steps. First we take a solution Yof the co-adjoint equation 
associated with (I), 

Yv=[U,  VI (3) 
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which plays a key role in generating integrable systems and Hamiltonian structures 
[7-lo]. Secondly, we search for a A,,&3 such that for 

v(") = ( a n  v)+ + A. 

the following holds: 

-vt"'+[U, V ' " ' ] E C C ~ ( / Z ) + C ~ ~ ( / Z ) + .  . .+Ce,(A). 

U, - Vt"' + [U, V"] = 0. 

This requirement yields a hierarchy of evolution equations: 

Obviously, Tu's scheme for generating integrable systems depends on the existence of 
V in (3) and choice of V'"'. In [9], Tu proved that (3) has a series solution 
V=X& V'", deg V"=-k under the extra assumption 

do Z 2d1 (4) 

where U, VE~=G@C[A,,/Z-'], G is a finite-dimensional Lie algebra over C and the 
gradation for 8 is not limited to natural gradation. In our present case: G = s l ( N ,  C), 
and as the gradation is defined by (2), we can remove the assumption (4) and get the 
following result. 

Proposition 2. There exists a non-zero V = Z z o  V,I-'EO such that (3) holds and ele- 
ments of matrix V, are all pure polynomials of U, (i= 1, . . . . p )  and their derivatives. 

Proox The proof of proposition 2 contains two steps. First we prove that there exists 
a non-zero V = Z ~ O  V,/Z-'such that 

and elements of matrix Vi are all pure polynomials of U, ( i=  1, . . . , p )  and their deriva- 
tives, where Vf = V-  VD with Vo representing the diagonal part of V and tr is a trace 
of matrix. The proof of this part is standard. We substitute 

V= KL-iF A-> 
m m N  

Jk ?k 
i=0 ;no /&-I 

with the initial values V$'=. . .= V$-dv- ' )=O ( j # k ) ,  V!?=/3a; (i= 1,. . . , N )  into 
(3'); here .!$k~(8$,k)l&;,/&,V, p is a non-zero constant and 

We have 

(ai-  a,)V$k+do) 
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n = l ,  2,. . . l = l , 2 , .  . . , N. 

Here we have followed the following convention for the sake of convenience: 

VI;")=O m i 0  1 <i ,  j <  N. 

It is easy to show that all the V$) can be determined by the recursion relations step by 
step and V g )  are all pure polynomials of ul (i= 1, . . . , p )  and their derivatives by 
induction. In fact, suppose that Vp' ( i # j ) ,  O<k<m-d l - l  and V!?, O<k<m-do 
are the known pure polynomials of ui (i= 1 ,  . . . , p )  and their derivatives, then by taking 
k=m-do-d l  in ( 5 4 ,  we can easily deduce from ( 5 4  that V$"-dl) ( i # j )  is also a 
known pure polynomial of ui ( i =  1, . . . , p )  and their derivatives. Further, a detailed 
analysis of (5b) with n=m-&+I implies that 

N 
(Da;)'-1 vji""fo+"=p I 1=1,. . . , N 

i= I 

where Fj ( l = l , .  . . , N )  is some known pure polynomial of V$ ( i#j ,  
l < i , j < N , O < k < m - d l - l )  and ~ V f '  ( i = I ,  ..., N,O<k<m-do).  From (6), we 
immediately deduce that V$"-":"' ( i= I , .  . . , N )  can be uniquely determined and is a 
pure polynomial of uj.(j= 1 ,  . ... , p )  and their derivatives. The second step of the proof 
is to show that V so obtained satisfies (3). Set 

B= Vx-[U,  VI. 

It suffices to show that B=O. From (Y), we know that B must be a diagonal matrix 
and 

tr( V ~ B )  = O  k = O , l , . .  . ,N-1. (7) 

tr(VkB) = tr( v'(v,- [U, V I ) )  
In fact, 

=tr(vkv,) -tr([u, V'+']) 

= tr( V' vr) =- (tr vk+ 1 
k +  I 

= 0. 

Substitution of 
o o N  

+-do i - l  
B =  1 B!?EIIA-' 

into (7) leads us to 
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When n= -do, (8 )  becomes 
N 

(fiai)'B!rdo)=O I=O, 1,. . . , N -  1 
I -  I 

which implies that 

B-dO /; = 0 i= 1,. . . , N .  

Now suppose that Bj?=O (-dogk<m), then (8) with n = m + l  leads to 
N o= c c c V$: , . . $r'!/!;/;V$)B${ 

-doQk<mfl i i = l  14ii. ... +<N . 
ja+ ...+ jr -*+I-k 

N N 

Vg$ . . . v::;:)V!i)B!;; + c ( V!O')'B"+l' hi, Oil 
i , = l  

= c  C '  c. 
-&4k4m i g - 1  14;~. ..., i j 4 N  

ji +...+ j ~ m +  I - k  

and 

which imply that B$+"=O (i= I , .  . . , N ) .  Thus, we have proved by induction that all 
the vanish, i.e. B=O. Therefore the proof of proposition 2 is completed. 

This result is important as assumption (4) is restricted. For example, consider the 
Kaup-Newell spectral problem 

In this case, do=2, dt =d2= 1, and then (4) is not satisfied. More importantly, due to 
the removal of the extra assumption (4) in proposition 2, we can determine that, for 
which kind of U we are able to choose V("l-(A"V),. Thus, an effective algorithm to 
generate integrable systems is given. In fact, from proposition 2, we deduce that 

-(Tv)+,+ t U, ( a w +  I = t U, ( a v -  I (9) 

where (TV)+=EI=o  KT-'and (2."V)-=A"V-(PV)+. It is easy to see that the terms 
on the left side of (9) are of degrees not less than d;=(dp- [dp[ ) /2 ,  while the terms on 
the right side are of degrees not greater than do- 1. therefore the terms on both sides 
are of degrees ranging over the interval F = [d; ,  do- I]. Thus, we deduce that 

-(L"V)+,+[U, (dnV)+l= C A  
1-8 

for some 
basis of @;.&7,, we could in general derive a hierarchy of integrable equations: 

(xldegx=i, x e s } .  Therefore, when we take el(dj, . . . , e&) as a 

U,- (d"V)+x + [ U, (a" V),] =o. 
In this case,  we^ have 

p = ( N 2 -  l ) ( d o - d J = ( N 2 -  I)(&- td, t ;Id,/). (101 
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It is easy to see that the number of potential functions increases quadratidly with N. 
It is of practical importance to find reduced spectral problems where the number of 
potential functions is considerably less than (10). To this end, we need to consider 
various subalgebras of I. It is known that the following relations hold: 

[Er, &,I =o U # k ,  l#i)  

[E,, I & I =  -Ekj (W). 
[E,,, l$i]=Eii-Ej 

Set H;=Eii-Ei+l, i+l and assume that I, is a linear span of (Hi@X'"+b:Ei10 
Ao"+buli#j, nee, where a is an integer greater than 1 and bo, bi are integers such that 
O<br, bi<a}. We can easily verify that 91 is a subalgebra of I, thus 

bi=O ( t = l , .  . . , N )  

b..+b..=O 'I I' (mod a) (11) 
bo+ bki-be= 0 (mod a). 

It is also easy to see that (11) is solvable. In what follows, we show that when U e I 1  
and $3, is a subalgebra of 9, (3) has a series solution V&I. In fact, due to UsBl cB, 
we know from proposition 2 that there exists V E I  such that V, = [ U, VI. On the other 
band, I can be decomposed as 

,3=9,092 

where I2 is a linear span of 

U {Hi@Aa"p.+k, (1 -~5&@A"'+~li#j; k ,  lare integers}. 
14k4n-I 
04140-1 

I s i j 4 N f l ~ I  

Thus, V can be rewritten as 

v= v, i- vz ViEBi (i= 1,Z). 

Note that 

[ I 1  3 91 IC% [%, 3 2 1 c I 2  

we have 

Thus we reach the following conclusion. 

Proposition3. Suppose U = e o ( ~ ) + u u I c l ( A ) + .  . . + u , e , ( A ) ~ 9 ~  a n d I ,  is asubalgebraof 
I, i.e. (1  1) holds. Then there exists a series solution V = 2 z o  ViA-'&, such that (3) 
holds and elements of matrix Vi are all pure polynomials of U; (i= 1, . . . , p )  and their 
derivatives. 

From proposition 3, we deduce that 

- (/Z"V)+, + [U, (.t""V)+] = [U, @an V)-]. 
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Similar to the above, we know that when we take el(2.), . . . ,e,@) as a basis of 
@j&31,, we could in general derive a hierarchy of integrable equations, where 
6=[d;,d,-l]  and +?liz{xldegx=i,x~+?l}.  It is evident that 

p < ( N z -  I)(&- dJ  = (A''- l)(do-~fd, + fld,l). 

We will now give some examples. In order to fix the integral constant arising from 
calculation, we shall follow the homogeneous rank convention: both sides of an equation 
have the same rank, where the definition of rank is [7-101 

rankx=degx (XE+?) 

rank(uj) =do-d, ( i = l ,  . . . , p )  

rank(A) =deg(xA) - deg(x) 

rank@) =do 

rank(p) = 0 (/3=const,P#O). 

Example 1. N = 3 .  In this case, we have the following solution of (11): 

a= 3 blz=bu=b31= 1 b13= b32= 621 = 2 .  

Furthermore, take do= 1, d p = - 2  and 

Obviously, p = 8. Thus we immediately get a new spectral problem, 

which is considered in [ 1 I ,  121. 

Example 2. N =  2. In this &e, we have the following solution of (1 1) : 

a = 2  biz=bZi= 1. 

Furthermore, take do = 1, dp = - 1 and 

We get the following spectral problem: 

v x =  Uv 
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where 

U a-& + 0a-I 

-a+Sa-' + Ua-'  -U 
U=[ 

Set 

we have 

which is simply the Boiti-Tu spectral problem [13]. 

Example 3. N =  3. In this case, we have the following solution of ( 1 1 ) :  

Furthermore, take do = 2, d,= 0 and 
a=4 b13=b31=2 b12= b23= 1 b21= b3z= 3. 

In this case, p = 4 .  Thus, we get the following new spectral problem: 

y.= UY 
where 

We take 

a b  a>. b,J3 c,J2 

[ g h f.l l n Z 0  [ g,J2 h,.X' -e,,, 
V= d e - a  f = 1 d,,,L-' e,,-a,, ~J , ,A-3  

Then it follows from V, = [ U, VI that 

a, = hid+ L'g - A'c 
b,= (2r -s)b + Lu(e-2a) +A% 
cx=,(r + s)c + hf - A2e - A2a - Aqb 

d,= ( s  - 2r)d+ Aqg- Lfr 
e, = -L2c + aZg + lqh 
fx = (2s - r)f-A*d+ Aqta - 2e) 

g,= a2a - (s + r)g + a2e 
h,= h2b + ( r -  2s)h - h g  
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or 

a. = -eo= PI =const #O h0=3plu d0=3plq c,=o 

go=-3pluq 

16 = -3plq,+ 3pi(s -2r)q - 3pluq2 

al = -3pj U& + 3p1 U?,'+ 3p luq(r.7 2) 

el =-3pIuqX-3pIu2$+ 3pluq(s-2r), . . .. 

bo = 3p lu.y + 3p1(2s- r)u - 3 p 1 d q  

Case (b)  : 

4 =eo = ho =do = 0 

fo=P2q bo=Pzu al=$p2(s+r)-IP2uq 

el = &q+ 1 ~ 2 ( s + r )  

d l = - P 2 q ~ + ~ P 2 q s - $ P 2 q r - ~ P 2 u $ , .  . .. 

co =go = p 2  = const #O 

I h, =p2u,+ $ p2us- $P2ur-5pdq 3 

In general, we can obtain recursively from (12b) all the~a,,, b,,, c,, d,, e,,,,Ln, g,! and 
h,, . 

On the other hand, we have 

-(n4n~)+,+[u, (n4"v)+1 
= -a,,\HJ - e,H2- b,-lJE12-h- I J E ~ ~  - 2uaJ.EI2 

+ue.dE12+q(a.-Ze,3dE23+2rb,-1dE12 

- ~ b , - ~ ~ E ~ ~ - r f ~ - ~ ~ E ~ ~ + 2 s f , - ~ ~ ~ ~ .  

Therefore, we can deduce a hierarchy of equations: 

U,= b,- I,~+ 2ua.-ue,- 2rbnmI + ~ b . - ~  = h,, 

qr=h- I = -  qa, f2qe. + 15- I  - 2s f -  I = -d. 

r, = a., 

~,=e, ,~ .  
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We have two hierarchies of equations corresponding to two different choices of no, bo, 
CO, do, eo,&, goand ha. In particular, for case (a), takingn=l, P I = $  in ( 1 3 ) ,  we have 

u,=u,+3(s-r) lr ,+u(~-r) , -~uu,q+ (s-2r)(2s-r)K+6K2q(r-S)+3K3a 

q,= -qxx+ 3(s-r)qX+ q(s-2r) , -hqXq+ ( r - 2 s ) ( s - ~ ) q +  6u$(s- r )  - 32q3 

r,= [-uzq+2q2 +uq(r - 2s)], 

s,= [-uq,-U2$+ uq(s- 2r)].r. 

For case (b), taking P 2  = 1 ,  n = 1 in (1:3), we have 
3 3 3  

K , = K ,  + 5 Us - I W'- 5 2 4  

q, = qx - $ qs + Zqr + $U$ 

r,= l(s + r)x-  t(uq), 

s,= $(s + & + f(uq),. 

Example 4. For general N ,  we have the following solution of (1 1) : 

a=N,bi , i+l=l ,bi , i+,=-2 ,..., bi,i+N-l=N-l 

b:ti,i=N-l, b i t , i=N-2 , .  . . , bi+,v-i,i=l. 

Furthermore, we take 

0 1  

0 0 ... 0 ~ 1 
1 0 ... 0 0 

and choose el@), . . . , e,(@ as a basis of 

In this case, do= 1, dp=-(N- 1). Thus, we can obtain an NX N spectral problem. 

Example 5.  N = 3 .  In this case, we have the following solution of (1 1): 

a=6 bi3= b31 3 biz= 1 bz=2 bnl =5 b32=4. 

Furthermore, we take do=3, dp= -1 and 
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In this case,p-5. Thus, we get the following spectral problem: 

VI.= UY 
where 

Z,, Z12 2 1 3  Z14 
2: Z22 2% z 2 4  

SP(P> q):= 2 1 4  211 22) 
- 2 2 4  -z; 

3. Further examples 

In this section, we shall consider some other subalgebras of 9 = s I ( N ,  C)@C[A, A-'] 
and the corresponding integrable systems. From [14], we know sl ( N ,  C )  has the follow- 
ing subalgebras: 

ZI , Z3 skew Hermitian of orderp and q, respectively 
TrZI+TrZ3=0,Z2arbitrary 

Z,complexmatrix; Z,, and Zlj 
of orderp, Z12 and ZI4p x q matrices, 
Z , ,  and Z22 are skew Hermitian, 
Z13 and Z,, are symmetric 

ZI , ZZ n x n complex matrices 
TrZ,+TrZ,=O 
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In addition, we have 

w, M l c s 4 p ,  4). 

In what follows, we only consider two subalgebras of si (A‘, C ) :  su(p, q), sp(p, q). For 
some other subalgebras, a similar discussion can be undertaken, but this will be provided 
elsewhere. 

3.1. NP, 4) 
First we consider su(p, 4). Obviously, %=su(p, q)@C[A, A-’] is a subalgebra of 9= 
s l (N,  C)@C[A, A-’]. From proposition 2 in section 2, we know that when the condi- 
tions of proposition 2 are fulfilled there exists a V E ~  such that V.=[U, VI. Thus, 
when Ue:su(p, q)@CC[A,A-’]c9, we have V& such that V,=[V, VI. Furthermore, 
we assume that the projection of Vonsl(N, C)@C[A, XI] is non-trivial. It immediately 
follows from (10) that there exists a V ~ E S U ( ~ ,  q)@C[A, A-’] such that Vl,=[U, V I ] .  

In the following, we proceed to consider subalgebras of 3,. Assume q>l,  then 
su(p, q) can be rewritten +s 

ZI , Z4, 2, skew Hermitian of orders 
p ,  (I and F, respectively 
Tr ZI +Tr Z4 + Tr Z6 = 0 
2, , Z 3  ,Z, arbitrary 

q+r=q 

Set 

Zl , Z4, Z, skew Hermitian of 
ordersp, 4 and I’, respectively MO = 

M3 = { f 0 0 is) 1 2 5  arbitrary} 

0 -2: 

and g3 is a linear span of {MOOA”,  MI@^^"+^', M , I ~ A ” + ~ ~ ,  
0 or 1 (i= 1,2,3)]. Obviously, 

su(p, q, f i = M o @ M i @ M z 0 M 3  

and S3 is a subalgebra of tel, and thus 

b, + 61 -bz= 0 (mod 2). 

Z, b,eithc 
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It is easy to give the following three solutions of (IS): 

Case I: 

bi =bz= 1 bs=O 

Case U: 

bi=bs=l b, = O  

Case 111: 

bt=bi=l  b2 = 0. 

Here we only consider case I and the simplest case: p=q=F= 1. In this case, we take 

Thus, do= 1. Further, we take dp=O and obtain the following spectral problem: 

0 

-w* -iu 

where U, U are real potential functions. * Denotes the conjugate. Obviously U&,. Set 

d 4 . P  e,,,aP 

-ib,. 
V = [ $  -ia+ib ]= C [d$ -ia,*+ib,. c,. ]A-''" 

e* -c* -5 mSO g1-I -c; 

where a, b are real. From 'V,= [U, VI, we deduce that 

ia,=n (e*- e)& = A  (e-e*)  + wc* - w*c 

c,= (-iu+2iu)c- M* + w(ia- 2ib) 
d,=(2iu-iu)d-Ac*+w*e ( 1 W  

e,=i(u+ u)e-il (a +b) -dw 

or 

ia,n,y= &- e, - ib,,= e,,,- e; + w d  - w*c,. 

c,".%= (-iu+ Ziv)c,.-d: + w(iu,,, -2ib,J 
d,",.= (2iu- iu)d,,- c:+ I + w*e,. 

e,,r=i(u+ u)e,n-i(u,n+ I + bPn+ I)  -4.w. 
We now give the first few of a,n, b ,,,, e,", d,, e,. in two cases. 

Case (a) : 

co=o a0 = -bo= 81 =red const #O 
do= -3iplw* eo=O U ,  = 3PII WIZ bi = O  

c1=-3iplw,+3p1(2u-v)w,. . , , 
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Case (6) : 

uo = bo = co = 0 eo=p2=real const#O 

do=O c1=p2w ul= fp2(u+ U) bl =fPz(u+u) 
d, = -p& - 4 ip2w*( U - u) 

In general, we can obtain recursively from (166) all the U,,,, &, c,., d,“, e,n. On the 
other hand, we have 

- ( a W + x  + r t: ( n W + l  
0 

0 0 
+ [(I 0 -iu+iu ;),[! -iu,+i6. “1. 

-w* -10 -c$ -ib, 

Therefore, we can deduce a hierarchy of equations: 

ut = 

0, = an.” 

w, = c, + c,(iu - 2i0) + 2i6.w -ia.w= -d$ . 
Thus, we can take U=U. In this case, (17) becomes 

U, = 

w,= c,-iucn+2i6.w - iu.w = -d.* . 
We have two hierarchies of equations corresponding to two different choices of uo, 60, 
co, do, eo,&. go and ha. In particular, for case (U),  taking n = l ,  P I = - $  in (17b), we 
have 

u,=-(lWl2).~ 
wI = iw,, - u,w + iu2w+iw2w* 

which is simply the Newell equation [15,16]. For case (b), taking pz= 1, n = 2  in (176), 
we have 

u,=[;u,+ti(w*w,- w$w)+fu3lX 
3 .  I wt= w,, + fiu,w, + 2iuwx,+ zIu,,w + T U U ~ W  

- +u2w,- $2~: +;ww*w,+iwd +$iuw2w*. 
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Obviously, 

Set 9 4  is a linear span of {M,@a2", Mz@a?+b, iw3@ah+h, ~ . , @ P + ~ i n e z ,  6) is 

~ p ( p ,  4) = M I  OMzOM3OM4. 

either 0 or 1 ( i = 2 , 3 , 4 ) } .  It is easy to show that g4 is a subalgebra .of 
SP(P, mw, a-'], thus 

b2 + b3- ba= 0 (mod 2). (18) 

We have the foUowing three solutions of (18),: 

Case I: 

b3=b4= 1 b2=0 

Case 11: 

bz=b3=l  b4=0 

Case 111: 

bz=b4=l  b3=0. 

Here we only consider case I and the simplest case:.p=q=l. In this case, we take 
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Thus, &= 1. Further, we take dp=O and obtain the following spectral problem: 

Iyx=lJIy= -a o -W -w 
-2% -w -iu 

where U, U are real potential functions. Set 
i a c d e  c,. d,J1 eJ? 

-ia,. -cZ 
ib e ib,. e,&-' J J '  

-fin-' -C, -ib,H 

where a, b are real: From v, = [ U, VI, we deduce that 
ia,= wc*- w*c+l(d-d*) 
ib, = w*c- wc* + za (f-f *) 
c,= (iu- iu)c + iw(b - a) +;le* + 2 h  
d, = 2iud- 2 i h  + 2we I 
e, =i(u + u)e + wf- k* - 2 k +  w*d 
fx=2w*e+2iuf-4ijlb 

or 
ia,,=wcZ- w*c,"+(d,.-d;) 

cmx= (iu-iu)c,. + iw(bm - a,") +&, + Zen, 
d,a,v = Ziud,,, - 2h,. + I + Zwe,,, 
e,,=i(u+ u)em+ wJn- cZ+ I -2c,.+ I + w*d,. 
f,, = 2w*e," + 2iuf;, -4ib,"+ I . 

no= bo = co=eo =O 
n , = a u  b I - I  - Z P U  c ~ = f ( ~ ~ - a ) w + r ( 2 a - ~ ) w *  ,... . 

1; ib>,= w cm-  wc:. + Z(J" -fi) 
~ 9 b )  

Now we begin the recurrence process with the initial conditions 
do = a =real const fo=P=realconst. 

I 

In general, we can obtain recursively from (19b) all the a,", b",, c,", d,n, e,",f;.. On the 
other hand, we have 

-(a2"v)+x+ [U, (a"v)+i 
io. c. 0 

-- - 

0 0  

+ 
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Therefore, we can deduce a hierarchy of equations: 

u,=a.,+ iwc: - iw*c. 

v, = b,- iw*c. - iwc: 

w,= c, + (iu - iu)c. - iwb, + iwa.. 

4. Concluding remarks 

We have described an algorithm to generate integrable systems. As a result, many new 
integrable equations are derived in a systematic way. In recent years many papers have 
been dedicated to the subject and different methods have been constructed. It is worth 
noting that similar algorithms were essentially implemented in [17, 181. 

In this paper, we only focus on deriving integrable systems. Naturally, the algebraic 
and geometric properties of these new equations could also be considered. For example, 
by using the trace identity proposed by Tu. we could easily establish the Hamiltonian 
structures of the new integrable equations derived in sections 2 and 3. Also the corre- 
sponding recursion operators of these integrable systems could be derived. Finally, it 
is possible that the new evolution equations derived in this paper will find physical 
applications. 
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