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Abstract. In this paper, an effective algorithm fo generate integrable systems is given. As
a result, many new integrable equations are derived in a systematic way.

1. Introduction

It is known that a central and very active topic in the theory of integrable systems is
the search for as many new integrable systems as possible. A key feature of an integrable
equation is the fact that it can be expressed as the compatlblhty condition of two
suitable linear equations, usually referred to as a Lax pair. One of these equations is
time-independent, takes the form of a linear eigenvalue problem for an eigenfunction
v and eigenvalue A, and plays a crucial role in the inverse scattering transform. On the
other hand, the role of Lie algebras in the integrable systems has attracted much atien-
tion [1-6]. Although the various ways in which Lie algebras have entered into the
theory are not entirely identical, Lie algebras essentially have served as the ground in
which the principal elements of Lax and zero-curvature equations grow—at least this
is 50 in two theories which have been systematically developed: Wilson’s general zero-
curvature associated with simple Lie algebras [1], and the theory of Drinfel’d and
Sokolov of equations associated with affine Kac-Moody Lie algebras [2].

Recently motivated by Wilson and Drinfel’d and Sokolov’s idea, Tu con51dered a
mode] isospectral problem and proposed, by introducing modified quantities, a new
method to generate integrable systems [7]. Furthermore, Tu proposed a new approach
to Hamiltonian structures of integrable systems—Trace identity [8].

In this paper, we develop Tu’s approach and give a very effective algorithm to
generate integrable systems. As a result, many known and unknown integrable systems
are derived in such a unified way.

This paper is divided into four sections. In the next section, we first introduce some
notation and conventions. A very effective algorithm to generate integrable systems is
given, which results in many new integrable systems being derived in a systematic and
unified way. Some illustrative examples are also given. In section 3, some other interest-
ing examples are considered. Finally, some concluding remarks are given in section 4.
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2. An algorithm to generate integrable systems

Let us begin with the following model isospectral problem:

y=Uy (1)

where U=eg(A) Tme (L) +. . . +ue,(A), ed) (i=0, 1, ..., p) belongs to a Joop algebra
L=5l(N,CO)®C[A, A", and u (i=1,...,p) is taken from the Swartz space
&(—co, w0). Different gradations of % may be available;

deg(X@A")=n for Xesi(N, C). {2)

Throughout the paper, we always fix the gradation (2). Just as in [7-10], we assume
that e1) (i=0, ..., p) meets the conditions:

(D) eo(A), ex(A), . . ., e,{A) are linearly independent;

(i1) ep(A) is pseudoregular, i.e.

@ =Kerad 2y(A) PImad ey(A)
Kerad go(A} is commutative
where |
Kerad eg(A) = {X|Xe¥, [X, e(1)]=0}
Imad ey(A) = {Ye &, s.t. X=[7, eo(1)] =0}
(il) do>0,do>dy2dr=. .. 2d,
where d,=deg ¢,(A).
Note that eg(1) =e,®@A%® with epes/ (N, c). It is easy to deduce that
sHN, C)=Kerad ¢;@Imad g
Kerad ¢, is commutative.
Further, we can easily show the following proposition.

Proposition 1. Matrix e, is similar to a diagonal matrix with N distinct diagonal
elements.

Due to this result, we set g as a diagonal matrix with & distinct diagonal elements
without loss of generality in the following discussion, i.e.

a
(253

N
€ - a,.-#a;(i#j) Z o;=0,
. =1
2945

Before going into details, we first recall Tu’s scheme for generating integrable systems.
The scheme contains two steps. First we take a solution ¥ of the co-adjoint equation
associated with (1),

VemlU, V] @
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which plays a key role in generating integrable systems and Hamiltonian structures
[7-10]. Secondly, we search for a A,e%¥ such that for

VW= (A" ) + A,
the following holds:
VU, VP e Ca(A)+ Cex(A) +. . .+ Cel(2).
This requirement yields a hierarchy of evolution equations:
U—V&O+[U, y1=0.

Obviously, Tu’s scheme for generating integrable systems depends on the existence of
_V in (3) and choice of ™. In [9], Tu proved that (3) has a series solution
V=352, V* deg ¥®=—k under the extra assumption

dy>2d, ()]

where U, Ve G=G®C[A, A7}, G is a finite-dimensional Lie algebra over C and the
gradation for G is not limited to natural gradation. In our present case: G=s/(N, C),
and as the gradation is defined by (2}, we can remove the assumption (4) and get the
following result. ‘

Proposition 2. There exists a non-zero F=ZX{24 VA~ '¢% such that (3) holds and ele-
ments of matrix ¥; are all pure polynomials of #; (i=1, ..., p) and their derivatives.

Proof. The proof of proposition 2 contains two steps. First we prove that there exists
a non-zero V=22¢ F;A™ such that

Ve, ={U, Ve (37
(tr V5),=0 k=1,...,N

and elements of matrix V; are all pure polynomials of 4, (i=1, .. ., p) and their deriva-
tives, where Vp=V— V' with Vp representing the diagonal part of ¥ and tr is a-trace
of matrix. The proof of this part is standard. We substitute

o . [==] N A
V=Y Vo '=sY T VPELT
=0 i=0 jke=1
with the initial values Vi@ =,  =p{~4"D=9 (jxk), VP =8a; (i=1,...,N) into

(3"); here Ex=(6;0n)1<is<n, § Is a non-zero constant and

N P N
U= z a;E;;ld"+ Z Z ag‘)E,-jukﬂ.d*.
I=1 k=1 ij=i

We have
K+ d
(a;—a;} V:Er v

N r , )
= Vg‘)x-[- Z Z (Vgc"'dk')asj’."’)_ Vg‘"'d*']a‘fff)) l#] k?"d: (sa)
I=1 k=]
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Y V. ViR YE?=const
1t EN (Sb)

I e
n=12,... I=1,2,...,N.

Here we have followed the following convention for the sake of convenience:
Vim=0 m<0 1<i, j<N.

It is easy to show that all the ' can be determined by the recursion relations step by
step and VP are all pure polynomials of #; (i=1,...,p) and their derivatives by
induction. In fact, suppose that ¥ (i), 0<k<m—d;~1 and V¥, 0<k<m—d,
are the known pure polynomials of w; (i=1, . . ., p) and their derivatives, then by taking
k=m—dy—d, in (5a), we can easily deduce from (5a) that V{;""’"’ (i£f) is also a
known pure polynomial of #; (i=1,...,p) and their derivatives. Further, a detailed
analysis of (58} with n=m—d,+ 1 implies that

N
Y (Ba) 'Vt =F, I=1,...,N (6)
i=]

where F; (/=1,...,N) is some known pure polynomial of V¥ (i%/,
1<i, j<N,0<k<m—d,—1) and V§ (i=1,...,N,0<k<m—d,). From (6), we
immediately deduce that ¥{"~%*D (i=1,..., N) can be uniquely determined and is a
pure polynomial of u; (j=1, . ..., p) and their derivatives. The second step of the proof
is to show that ¥ so obtained satisfies (3). Set

B=V,—[U, V].

It suffices to show that B=0, From (3"), we know that B must be a diagonal matrix
and

tr(V*B)=0 k=0,1,...,N—1. (7)
In fact,
tr(VEB) =tr(V¥(V.—[U, V1)
=tr(V* V) —tr([U, V1))

=tr(V V) =ﬁ (tr FE*1),=0.

Substitution of

<0 N
B= 2 z BE{C )E;,'A._k
hmergy je i

into (7) leads us to

N
. . 0
2 Z 2 Va(i?z) R V::ifflf:) V%)Bgsia_o
—dysken =l 1 KH it N (8a)
ht o th=n—k

n=“do,_‘dg+l,... IQISN_I
N

¥ BP=0 k> ~dy. (8b)

=l
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When n= —dp, (8) becomes

2 {(Bo.YBF®=0 I=0,1,...,N—1
which implies that
By%=0 i=1,...,N.
Now suppose that B =0 (~dy<k<m), then (8) with n=m+1 leads to
N i .
0= 2 % z v . VRV B
—dpSh€m+1 =1 1<, 1SN .
At ti=ml =k
. { k. - +1
= ¥ T T VR VEVIRBR+ T (ridBRt?
P a=l
N
=Y (Ba)BG*" I=1,...,n8—1
and
N
¥ Brth=0

=1

which imply that Bf"*P=0 (i=1,..., N). Thus, we have proved by induction that all
the B vanish, i.e. B=0. Therefore the proof of proposition 2 is completed.

This resuit is important as assumption (4) is restricted. For example, consider the
Kaup-Newell spectral problem

=(—~iﬂ.2 J.g)
V==l )Y

In this case, dy=2, dy=d>=1, and then (4) is not satisfied. More importantly, due to
the removal of the extra assumption (4) in proposition 2, we can determine that, for
which kind of U we are able to choose V¥’ =(A"V).. Thus, an effective algorithm to
generate integrable systems is given. In fact, from proposition 2, we deduce that -

—(AV)xH U, (AP )] = (AW ) = U (ATV)-] @)

where (AP ) =270 VA" "and (A"V)-=1"V—(1"V)+. It is easy to see that the terms
on the left side of (9) are of degrees not less than d, =(d,— [4,{)/2, while the terms on
the right side are of degrees not greater than dy— 1, therefore the terms on both sides
are of degrees ranging over the interval 6=[d, , do—1]. Thus, we deduce that

—(A"V)+x+[U A=Y 1

1ed

for some fie%;={x|deg x=1i, xe¥]}. Therefore, when we take e|(1),...,€{1) as a
basis of @,.s%;, we could in general derive a hierarchy of integrable equations:

Uf— (RRV)+X + [U, (A-ﬂ V)+] =0,
In this case, we have

p=(N>—1)(do—d7)=(N"—1)(ds— 3d, + 3| d,}). (10)
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It is easy to see that the number of potential functions increases quadratically with N,
It is of practical importance to find reduced spectral problems where the number of
potential functions is considerably less than (10). To this end, we need to consider
various subalgebras of %. It is known that the following relations hold:

LEy, Ew]=0 (#k, 1#0)
LEy, Exl=Es—Ey
By, B ]=—Ey (k7).

Set H;=E;—FE;+1;+) and assume that &, is a linear span of {H,-@l""”', Ey@
Aeteniz s neZ, where a is an integer greater than 1 and by, b; are integers such that
0< by, by<a}. We can easily verify that &, is a subalgebra of &, thus

b,=0 (i=1,..., N}
by+b;=0 (mod 2) (11)
bﬁ+ bk;—bjg"“—'o (mod {.Z)‘

It is also easy to see that (11) is solvable. In what follows, we show that when Ue%,
and ¥, is a subalgebra of %, (3) has a series solution Ve®,. In fact, due to Ue ¥, =¥,
we know from proposition 2 that there exists Ve% such that V. =[U, V]. On the other
hand, % can be decomposed as

= gg @gz
where %; is a linear span of

1<kLs) y {H@X™*, (1 8,5,) Ey@A™7|i#]; k,  are integers}.
Py by e

Thus, V can be rewritten as

V=V +V, Vie®, (i=1,2).
Note that
(%, 4:]1<=%, [4), 4:]<%,
we have
VomlU V] - {V,x=[U, 1]
Vor=1U, V21

Thus we reach the following conclusion.

Proposition 3. Suppose U=eg() +ue;(A)+. . .+ ue,(L)e¥; and ¥, is a subalgebra of
%, i.e. (11) holds. Then there exists a series solution V=X, ¥:A~'e%, such that (3)
holds and elements of matrix V; are all pure polynomials of &; (i=1,. .., p) and their
derivatives.

From proposition 3, we deduce that
~ (X" V)ex T [U, (AN = (A" o~ [U, (A7) 2]
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Similar to the above, we know that when we take e;(1),...,e,{(1) as a basis of
®ies%y, we could in general derive a hierarchy of integrable equations, where
§=[d,,dy—1] and ¥y ={x|deg x=i, xe%, }. It is evident that

P<(N*—1)(ds—d;)= (N2 = 1)(dy— Ld, + H ).

We will now give some examples. In order to fix the integral constant arising from
calculation, we shall follow the homogeneous rank convention: botk sides of an equation
have the same vank, where the definition of rank is [7-10]

rank x=deg x (xe%)

rank{A) =deg{x4) — deg(x)
rank{u;)=dy—d; (i=1,...,p) -
rank(9)=dj

rank(8)=0 (B =const, §0).

Example 1. N=3. In this case, we have the following solution of (11):
a=3 byy=bp=by=1 biy=byy=by=2.
Furthermore, take dy=1,d,=-2 and

0 A0
e()=l0 0 Al
200

Obviously, p=8. Thus we immediately get a new spectral problem,

utv  A+wA2 7t
we=| A —u At wd 2 |y
A+sa? At -0

which is considered in [11, 12].

Example 2. N=2. In this case, we have the following solution of (11):
a=2 b;2=b21=1.

Furthermore, take do=1, d,=—1 and

) 1
«(®) =|:—A 0} e’(’l){o —OJ

ez(z.)=[(: (ﬂ,r‘ ea(x)=[? _01}3,".

We get the following spectral problem:
Y= Uy
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where
=[ u /’l.—s.l“1+ul'1:|
—A+sA +or™! —u '
Set
e [1 i ]
I -1
we have

—iA+il" s u+i2."’v]
u—iz"lv  iA—id"'s

which is simply the Boiti-Tu spectral problem [13].

TUT '= [

Example 3. N=3. In this case, we have the following solution of (11):

q=4 biz=hy=2 bu=bn=1 by =by=3.
Furthermore, take dy=2, d,=0 and
0 0 1
e(A)=10 0 03~
1 00
In this case, p=4. Thus, we get the following new spectral problem:
y==Uy
where
(r Aw A
U= s—r Ag
|22 0 -5
We take
fa b ¢ ] . boA At
V=|d e~a f|= 3 | did” en—an fud |17
- g h —e.. m=0 gml_z hm-‘l_] —&n

Then it follows from V,=[U, ¥] that
a,=Aud+ Vg— ¢
b=(2r— )b+ Au(e —2a) + A’k
cx=(r+s)c+Auf—Ae— lza—lqb
de=(s—2r)d+ Agg—33f
e.=—Nc+ g+ Agh
fuo= (25— PYf—22d+ Ag(a—2e)
g.=Aa—(s+r)g+ 1%
he=A2b+ (r—25)h— Aug

(124)
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or
Oy, ™= Ul + g1 — Cr
b = (2r = )b+ tl(€mt1— 28m s 1) + P
Con, ™ (rt+s)entufin—ens1—nir—gby,
Aon = (5™ 20)dp+ GG~ fon
oy =+ G+ Ghim
Jon, = (25— Yo — ot + (@1 — 2€541)
L P Gl g T S L

by = by (r — 28V h — gy

(128)

We now give the first few of @, B, Gy Gy 8y Jrns & a0d B, in two cases.
Case (a):

ap=—eo=f;=const#0 ho=3Bu dy=3fg =0
go=—3Puq bo=3p .+ 3P (25— u—3Purq
Jo=—3p1g:+3Pi(s—2r)g 3P ug’

ay=—3B g+ 3B 15 q+ 3P 10g{r— 25)

e1=—3Pwg,—3Blg + 3B ug(s—2r), . ...

Case (b):
Mp=eg=hy=dy=0 co=gy= Pr=const£0
fo=Bq bo=Bat ay=3P(s+r)— 1fauq
ey=3Paug+ 1 fa(s +7) hy = Batte 3 osts— § Bour —3 Pulq

d\=—Pogxt3 Pags—3agr—3 B, . . ..

In general, we can obtain recursively from (12b) all the a,n, i, Curs @ors €, frus & and
By ’
On the other hand, we have

—(A"V)ax+[U, B*P)4]
=—a, Hi—e, Hy—b,._y AEyx—fr—y AEss = 2ua,AE3
+ue  AEn+g(a, — 2e,)AEy+ 2rb,_ | AE |,
~5by— 1 AE —rf_ | AE + 25f,  AEna.
Therefore, we can deduce a hierarchy of equations:
Uy =b,1 *2ua,—ue,—2rbp.+sby_1=h,
g:=fn-1,— gant2ge,+ifo_ 1 —2sf,—1=—d,

F=a,,

(13)

S;:' e,,x .
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We have two hierarchies of equations corresponding to two different choices of aq, &,
Co, dy, €9, fo, 8o and Ay. In particular, for case (), taking n=1, 5, =%in (13), we have

W=ty + 3(s — iy + u(25— 1), —dun g+ (s—27) (25— Pu+ 61g(r—5) + 30’
@r=Gux+ 3(5 = )G+ (s~ 20)x = dug. g+ (r—25)(s— 2)g + 6ug’(s— 1) = 3’q’
re= [~ug+10q" +ug(r—25)l;
50= [—uge—1q +ug(s—21)]..
For case (b), taking f.=1, n=1 in (13), we have
u,=ux+%us-%ur-—-%u2q
g=g.—3gs+3gr+3ug’
re=3(s+r)y— 2(ug)x

5= 35+ )+ 1(g)s.

Example 4. For general N, we have the following solution of (11):
a=N, b =1L bye2=2, ..., bjyey-1=N—1
bz’+l,1‘"—"'N_ I, bi+2,:'"_‘N_2: v b:‘+1‘n’-1,i"—' 1.

Furthermore, we take

0 1 0
00 -
=] . - |a
o 0 0.1
10 .. 00

and choose ¢;{4), ..., e,(A) as a basis of

&
ie~(N=1,0]

In this case, dy=1, d,=—(N—1). Thus, we can obtain an N X N spectral problem.

Example 5. N=3. In this case, we have the following solution of (11):
a==6 513=bz1=3 bu:I b13=2 b;|=5 b32=4.

Furthermore, we take dy=3, d,=—1 and

eo(A)= A3

ol - i =

0
0
0

[ R
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In this case, p=35. Thus, we get the following spectral problem:
y=Uy
where
s ) A2

U= u's)u-] g — U3 u[.lz
» 0 A

3. Further examples

In this section, we shall consider some other subalgebras of 7@ =51 (N, C)QCI[A, A7}

and the corresponding integrable systems. From [14], we know s{ (N, C) has the follow-

ing subalgebras:

sulp, g)i= {(Z. Zz) Z, Z3 skew Hermitian of order p and g, respectively}
PONZT 2| Te 2,4+ Tr Z5=0, Z, arbitrary

ornl%

v cr={( %)

sa*(2n):={(_zzl ?)

Zy  Za  Zn Zy \|Zycomplex matrix; Z); and Z;
p(p, )= 2}2 Zn Z T Zs \jof order p, Zyz and Zy4 p X g maltrices,

—Zn Zu Zy —Z €5 and £5; are skew Hermitian,

ZT =2y —ZL Zy ||Z;and Z,, are symmetric

Zy, £z h % n complex matrices}
TI' Z| +Tr Zl =0

Z; 1 X pcomplex matrices}
Z; and Z; symmetric

Zy, Zp n% p complex matrices }
Z, skew symmetric, Z, Hermitian

and so on. ‘
For each of su(p, q), su*(2n), sp(n, C), we could prove that there exists a correspond-
ing M <si(N, C) such that

(N, C)=K@M
[K, Klc=K K, MlcM

where K is any one of su( p, g), su™(2n) and sp(n, C).
In fact, taking su(p, ) as an example. Set

i
-Y; I

It is easy to show that
SI(N, C)Y=su(p, DM

[su(p, g}, su(p, )] < su(p, g)
Lsu(p, q), Ml M.

(14)

¥;, ¥; Hermitian of order p and ¢, tespectively}
p+a=N Tr ¥;+Tr ¥;=0 '
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In addition, we have
[M, M] CS“(P: 'Y)'

In what follows, we only consider two subalgebras of s/ (N, C): su(p, g), sp(p, q). For
some other subalgebras, a similar discussion can be undertaken, but this will be provided
elsewhere.

3.1 su(p,q)

First we consider su(p, g). Obviously, &:=su(p, )@ C[A, 1'] is a subalgebra of ¥ =
sl (N, C)®C[A, A™'). From proposition 2 in section 2, we know that when the condi-
tions of proposition 2 are fulfilled there exists a Ve% such that V. =[U, V]. Thus,
when Uesu(p, 9)@C[A, 17" =%, we have Ve# such that V,=[U, V]. Furthermore,
we assume that the projection of ¥ on s/(N, C)® C[2, '] is non-trivial. It immediately
follows from (10) that there exists a Viesu(p, 9)®@C[A, A™'] such that V, =[U, V1.

In the following, we proceed to consider subalgebras of %,. Assume ¢>1, then
su(p, q) can be rewritten as

Z1, Z4, Z5 skew Hermitian of orders

Z o Z L P, G and F, respectively
6= ZT Z, Zs|| ’ _ :
su(p, 4, 7) 2? —‘z;;" Z: Tr Z,+Tr Z4+ Tr Zs=0 G+i=q
Zy, Z3, Zs arbitrary
Set
Z Zy, Z4, Zg skew Hermitian of
M= Zy orders p, § and F, respectively
Ze/ | T Z1+Tr Z4+Tr Zg=0
0 Z, 0
M,={|ZI 0 0}|Z,arbitrary
0 0 0

=]

0
Zs 1| Zs arbitrary
-Zi ©

0 0
=< 0 0 Z; arbitrary
ZT 0 0

0 0
Mi=410 0

0
and &, is a linear span of { Me®A™, My @A%™, My@A™ %, Ms®A™*|neZ, b, either
0 or 1 (i=1, 2, 3)}. Obviously,

SH(P, q: F)= MD@MI(“DMz@MS

and &, is a subalgebra of %,, and thus
by+b;—b=0 {mod 2). (15)
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It is easy to give the following three solutions of (15):

Case I:
bl =b2= 1 b3 =0
Case I1:
bz =b3 =1 b] =0
Case III:
b] = b3 = I bz = 0
Here we only consider case I and the simplest case: p=§=F= 1. In this case, we take
0 0 A
2()=10 0 0/
A 00
Thus, dy=1. Further, we take d,=0 and obtain the following spectral problem:
w0 A
v.=Up=| 0 iv—iu w |y
A —w*t —ip

where u, v are real potential functions. * Denotes the conjugate. Obviously Uc%,. Set

ia d e i doA™' enAT!
V=1d* —fa+ib ¢ |= Y |did" ~iantibe cm |27
e* —c* —ip| ™0 E:r,ﬁ._l —ch ~ib,

where a, b are real. From ¥, =[U, V], we deduce that
ia,=A(e*—e)ib,=A(e—e*)}+wc* —w*c

cx=(—iu+2iv)e — Ad* + w(ia— 2ib)

dy=(2iu—iv)d—Ac* +w¥e (162)
e.=i(u+v)e—id(a+b)—dw
or
18, = €} = em—ibn, = en— el + wek —w¥e,
Cm, = (—iu+ 2iv)c,, — df +w(ia,, — 2ib,,) (16b)

= (2iu—iv)d, — e+ 1+ Wey,
€m, = i(u + U)em - i(am+ 1+ bm+ ]) - d,,,w.

We now give the first few of @y, &y Gy &, € in two cases.
Case (a):

=0 ag=—by= f1=real const£0
do=—~3iﬁ[w* eo=0 a,=3ﬁ1|w]2 b|=0
a=—3ifw,t3f(2u—-v)w,....
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Case (b):
ay=bp=cq=10 eo= f:>=real const %0
dy=0 &= Pow ay=3Bx(u+tv) by=13B(u+1v)

dy=—Bow¥ —3iBw*(v—u)
e =_iﬁ2(u+ 0)x+ 8 Ba(ut+ 0)+ 3 fo w]?

o} = Bawko 3 1Bw(v—u) + 3B (v —u).
~if22u— )wE+3 Baw*(v0— )(2u—v)
+ W= diBa(u+ 0)e+ 8Fa(u+ 1) + 1w,

In general, we can obtain recursively from (16b) all the a,., b, Cn, dm, &n. On the
other hand, we have

~ ATV )+ U 22 )]

ia, 0 0
== 0 —ia,+ib, &
0 ""C: _ibn x
i 0 (] ia, ] 0
+110 —iutio w |,| 0 —ig,+ib, ¢
0 —w* —ip 0 —c¥ —ib,,

Therefore, we can deduce a hierarchy of equations:
U=a,
v, =ay, (17a)
W=, + calin—2iv) + 2ibw —ig,w=~d}.

Thus, we can take #=wv. In this case, (17) becomes
U=d,,

W= €, — iuC, + 210w —la,w=—d}. (176)

We have two hierarchies of equations corresponding to two different choices of gy, by,
¢o, do, €0, fo, 8o and hy. In particular, for case (@), taking =1, ;=1 in (175), we
have

= —(|w|%)=

Wy = Wi — tpW H it w +}iw2v!.'*
which is simoply the Newell equation [15, 16]. For case (8}, taking f.=1, n=2in (175),
we have ‘

sy =[St + S W — wEW) + 307,
W= Wepn + 2itw o+ 2iuw .+ T+ Sunew

L 3 . .
— 31w, — awWwE + Jww*w, + iwed + Stuww*,
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3.2 sp(p. q)
Set
Zy 0 0 0
D Z, 0 0
= _ 11
M] 0 0 Z“ 0 Z“,Zz; skew Hermi an}
0 0 0 Zp
(/0 Zy 0 0
AP 0 0
_ 12
Moy=¢ 0 0 0 -Z, Zysof order px g
L\ O 0 -zZzL 0
({0 0 0 Zi\
Jto o zL o .
M= 0 Z. 0 0 Zisoforderpxg
VAV 0 0
0 ¢ Z 0
0 0 0 Zu| . |
M= _Z, 0 0 0 Z13, Zog SYIINELLIC > .
0 “224 0 9

Obviously,
sp(p, @) =M M@ M:sD M.

Set @, is a linear span of {M;®A", M,®A™* ", Ms@AY ™, M@A*MneZ, b; is
either 0 or 1 (i=2,3,4)}. It is easy io show that %, is a subalgebra of
sp(p, H@CIA, A7'], thus

b+ b3 —by=0 (mod 2). C18)
We have the following three solutions of {18):
Case I: 7
bs=bs=1 b,=0
Case I1:
by=b=1 b,=0
Case II:
b =bs=1 by=9.
Here we only consider case I and the simplest case: p=g=1. In this case, we take
10
eo(A)=| | 0 0 2 A

0 -2
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Thus, dy=1. Further, we take d,=0 and obtain the following spectral problem:
i w A 0

w* v 0 22

-2 0 —iw ~w|¥

0 21 -w —iv

yx=Uy=

where u, v are real potential functions. Set

ia ¢ d e ia,, Cm  dph' e
- c** i.’i e f* - ch . ib,, 1 e,,,.}L—' Sk P
~-d* & —ia —c"| Sel @k ehd —ig, —ch
et —* —¢ —ib P L b L
where a, b are real, From V. =[U, V'], we deduce that
ig,=wc* —wre+ A{d—d*)
ib.=wre—we™+ 20 (/11
ex=(u—iv)c+iw(b—a) + Ae* +21e
. ' i {19a)
d.=2iud—2ila+2we
e.=i(utve+wf—Ac*—2c+w*d
fo=2wre+2vf—4ilb
or
iy, = wek—w¥cpn+ (dn—d¥
b, =w*cm—weh+2( fu—1f7)
Cmy = (lu—i0)c,, + Wby — a,) + e + 2e,,
= g.iudm-) 20+ g-?.we,,, ) (196)
e, =i(u+ v)en+why— ka1 — 20,4 +w¥d,
S, = 2we,, + 2ivf,, — dib 41 .
Now we begin the recurrence process with the injtial conditions
By=by=ce=gy=0 dy= a =real const fo= B =real const-
a;=au by=3pv =328~ a)w+i2a—fHw*, . ...

In general, we can obtain recursively from (195) all the a,,, b, €y dis €m» fin. On the
other hand, we have

—(ATV)ax LU, A7V ]
/ia,, ¢, 0 0

c¥ ib, O 0

0 0 =-ig, -—c¥
\0 0 ¢, —iba/,
Ffiw w O 0 ia, ¢, O 0
w* iv 0 0 & 1, 0 0
0 0 —juw —w*{’l 0 0 —ig, -—c*
0

0 —w -—iv ¢ 0 —e, -ib,
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Therefore, we can deduce a hierarchy of equations:
u=a,, +iwek —iw*c,
o,=b, —iw*c,—iwc} (20)
W, =g, + (iv — i) ¢, ~ iwb, + iwa,.
In particular, taking #=1 in (20), we have
u=au,— 3i(2a — BYw**—w?)
v,= 1P, + 5i(2a — BHwW* —w?)
w,= (28 — )wet 52a — B)wt —iw(3 v —aw)—i(u~ ) [3(28 — e)w+ 1 (2¢ —~ F)w*].

4. Concluding remarks

‘We have described an algorithm to generate integrable systems. As a result, many new
integrable equations are derived in a systematic way. In recent years many papers have
been dedicated to the subject and different methods have been constructed. It is worth
noting that similar algorithms were essentially implemented in [17, 18].

In this paper, we only focus on deriving integrable systems. Naturally, the algebraic
and geometric properties of these new equations could also be considered. For example,
by using the trace identity proposed by Tu, we could easily establish the Hamiltonian
structures of the new integrable equations derived in sections 2 and 3. Also the corre-
sponding recursion operators of these integrable systems could be derived. Finally, it
is possible that the new evolution equations derived in this paper will find physical
applications.
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